Showing 11 - 20 of 83
Associated with every popular nonlinear estimation method is at least one "artificial" linear regression. We define an artificial regression in terms of three conditions that it must satisfy. Then we show how artificial regressions can be useful for numerical optimization, testing hypotheses,...
Persistent link: https://www.econbiz.de/10011940607
We first propose procedures for estimating the rejection probabilities for bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive as estimating rejection probabilities for asymptotic tersts....
Persistent link: https://www.econbiz.de/10011940622
The fast double bootstrap, or FDB, is a procedure for calculating bootstrap P values that is much more computationally efficient than the double bootstrap itself. In many cases, it can provide more accurate results than ordinary bootstrap tests. For the fast double bootstrap to be valid, the...
Persistent link: https://www.econbiz.de/10011940645
We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics--Student's t, Anderson-Rubin, Kleibergen's K, and likelihood ratio (LR)--can be written as functions of six...
Persistent link: https://www.econbiz.de/10011940646
Conventional procedures for Monte Carlo and bootstrap tests require that B, the number of simulations, satisfy a specific relationship with the level of the test. Otherwise, a test that would instead be exact will either overreject or underreject for finite B. We present expressions for the...
Persistent link: https://www.econbiz.de/10011940649
There are many bootstrap methods that can be used for econometric analysis. In certain circumstances, such as regression models with independent and identically distributed error terms, appropriately chosen bootstrap methods generally work very well. However, there are many other cases, such as...
Persistent link: https://www.econbiz.de/10011940650
We perform an extensive series of Monte Carlo experiments to compare the performance of two variants of the "Jackknife Instrumental Variables Estimator," or JIVE, with that of the more familiar 2SLS and LIML estimators. We find no evidence to suggest that JIVE should ever be used. It is always...
Persistent link: https://www.econbiz.de/10011940653
We introduce the concept of the bootstrap discrepancy, which measures the difference in rejection probabilities between a bootstrap test based on a given test statistic and that of a (usually infeasible) test based on the true distribution of the statistic. We show that the bootstrap discrepancy...
Persistent link: https://www.econbiz.de/10011940657
We first propose two procedures for estimating the rejection probabilities of bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive (per replication) as estimating rejection probabilities...
Persistent link: https://www.econbiz.de/10011940663
Resampling methods such as the bootstrap are routinely used to estimate the finite-sample null distributions of a range of test statistics. We present a simple and tractable way to perform classical hypothesis tests based upon a kernel estimate of the CDF of the bootstrap statistics. This...
Persistent link: https://www.econbiz.de/10011940672