Showing 1 - 10 of 499
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T+1 to T+H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that...
Persistent link: https://www.econbiz.de/10010300297
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T+1 to T+H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that...
Persistent link: https://www.econbiz.de/10003962215
A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements...
Persistent link: https://www.econbiz.de/10014216513
A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements...
Persistent link: https://www.econbiz.de/10003805619
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T+1 to T+H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that...
Persistent link: https://www.econbiz.de/10012991097
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T 1 to T H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that...
Persistent link: https://www.econbiz.de/10014035724
This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to different sampling frequencies and publication delays. Two model classes...
Persistent link: https://www.econbiz.de/10010298750
We propose a method to produce density forecasts of the term structure of government bond yields that accounts for (i) the possible mispecification of an underlying Gaussian Affine Term Structure Model (GATSM) and (ii) the time varying volatility of interest rates. For this, we derive a Bayesian...
Persistent link: https://www.econbiz.de/10011083412
The relationship between inflation and predictors such as unemployment is potentially nonlinear with a strength that varies over time, and prediction errors error may be subject to large, asymmetric shocks. Inspired by these concerns, we develop a model for inflation forecasting that is...
Persistent link: https://www.econbiz.de/10013298371
We derive a Bayesian prior from a no-arbitrage affine term structure model and use it to estimate the coefficients of a vector autoregression of a panel of government bond yields, specifying a common time-varying volatility for the disturbances. Results based on US data show that this method...
Persistent link: https://www.econbiz.de/10012822660