Showing 1 - 10 of 87
This paper demonstrates that if we intend to optimally rank order n objects (candidates) each of which has m attributes or rank scores awarded by m evaluators, then the ordinal ranking of objects by the conventional principal component based factor scores turns out to be suboptimal. Three...
Persistent link: https://www.econbiz.de/10015214985
Rank-ordering of individuals or objects on multiple criteria has many important practical applications. A reasonably representative composite rank ordering of multi-attribute objects/individuals or multi-dimensional points is often obtained by the Principal Component Analysis, although much...
Persistent link: https://www.econbiz.de/10015215242
In this paper we have proposed a method to conduct the ordinal canonical correlation analysis (OCCA) that yields ordinal canonical variates and the coefficient of correlation between them, which is analogous to (and a generalization of) the rank correlation coefficient of Spearman. The ordinal...
Persistent link: https://www.econbiz.de/10015215290
The classical canonical correlation analysis is extremely greedy to maximize the squared correlation between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with another variable in the dataset-2, the canonical correlation will be very high...
Persistent link: https://www.econbiz.de/10015215363
In this paper we test a particular variant of the (Repulsive) Particle Swarm method on some rather difficult global optimization problems. A number of these problems are collected from the extant literature and a few of them are newly introduced. First, we introduce the Particle Swarm method of...
Persistent link: https://www.econbiz.de/10015218256
Our objective in this paper is to compare the performance of the Differential Evolution (DE) and the Repulsive Particle Swarm (RPS) methods of global optimization. To this end, some relatively difficult test functions have been chosen. These functions are: Perm, Power-Sum, Bukin, Zero-Sum,...
Persistent link: https://www.econbiz.de/10015218263
In simulation we often have to generate correlated random variables by giving a reference intercorrelation matrix, R or Q. The matrix R is positive definite and a valid correlation matrix. The matrix Q may appear to be a correlation matrix but it may be invalid (negative definite). With R(m,m)...
Persistent link: https://www.econbiz.de/10015218580
The nearest correlation matrix problem is to find a valid (positive semidefinite) correlation matrix, R(m,m), that is nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q(m,m); m larger than 2. In the literature on this problem, 'nearest' is invariably defined in...
Persistent link: https://www.econbiz.de/10015218588
A high degree of multicollinearity among the explanatory variables severely impairs estimation of regression coefficients by the Ordinary Least Squares. Several methods have been suggested to ameliorate the deleterious effects of multicollinearity. In this paper we aim at comparing the...
Persistent link: https://www.econbiz.de/10015218755
Correlation matrices have many applications, particularly in marketing and financial economics. The need to forecast demand for a group of products in order to realize savings by properly managing inventories requires the use of correlation matrices. In many cases, due to paucity of...
Persistent link: https://www.econbiz.de/10015219996