Showing 1 - 6 of 6
This work presents a CO2 sorbent that may be synthesized from low-cost and widely available materials following a simple method basically consisting of impregnation of a nanostructured silica support with a saturated solution of calcium nitrate. In a first impregnation stage, the use of a...
Persistent link: https://www.econbiz.de/10010743644
Large scale pilot plants are currently demonstrating the feasibility of the Calcium-looping (CaL) technology built on the multicyclic calcination/carbonation of natural limestone for post-combustion and pre-combustion CO2 capture. Yet, limestone derived CaO exhibits a drop of conversion when...
Persistent link: https://www.econbiz.de/10010776575
The Ca-looping (CaL) technology is already recognized as a potentially viable method to capture CO2 from postcombustion gas in coal fired power plants. In this process, CO2 is chemisorbed by CaO solid particles derived from precalcination of cheap and widely available natural limestone. The...
Persistent link: https://www.econbiz.de/10011076407
The Ca-Looping (CaL) technology, based on a dual gas-fluidized bed system of CaO/CaCO3 particles operated at high temperature, is a viable technological process for highly efficient pre-combustion and post-combustion CO2 capture. In this paper we show a lab-scale experimental study on the...
Persistent link: https://www.econbiz.de/10011040568
The multicyclic carbonation/calcination (c/c) of CaO solid particles at high temperature is at the basis of the recently emerged Calcium-looping (CaL) technology, which has been shown to be potentially suitable for achieving high and sustainable post-combustion CO2 capture efficiency. Despite...
Persistent link: https://www.econbiz.de/10011040823
The low cost and wide availability of natural limestone (CaCO3) is at the basis of the industrial competitiveness of the Ca-looping (CaL) technology for postcombustion CO2 capture as already demonstrated by ∼1Mwt scale pilot projects. A major focus of studies oriented towards further improving...
Persistent link: https://www.econbiz.de/10011116006