Showing 1 - 4 of 4
In this thesis, we address issues of model estimation for longitudinal categorical data and of model selection for these data with missing covariates. Longitudinal survey data capture the responses of each subject repeatedly through time, allowing for the separation of variation in the measured...
Persistent link: https://www.econbiz.de/10009437884
When data are missing at random, the missing-data mechanism can be ignored but this assumption is not always intuitive for general patterns of missing data. In part I, we consider maximum likelihood (ML) estimation for a non-ignorable mechanism which is called almost missing at random (AMAR). We...
Persistent link: https://www.econbiz.de/10009476653
Murrayand Tsiatis (1996) described a weighted survival estimate thatincorporates prognostic time-dependent covariate informationto increase the efficiency of estimation. We propose a test statisticbased on the statistic of Pepe and Fleming (1989, 1991) thatincorporates these weighted survival...
Persistent link: https://www.econbiz.de/10009477089
Considerable recent interest has focused on doubly robust estimatorsfor a population mean response in the presence of incomplete data,which involve models for both the propensity score and the regressionof outcome on covariates. The ``usual" doubly robust estimator mayyield severely biased...
Persistent link: https://www.econbiz.de/10009431215