Showing 1 - 10 of 13
We propose two new types of nonparametric tests for investigating multivariate regression functions. The tests are based on cumulative sums coupled with either minimum volume sets or inverse regression ideas; involving no multivariate nonparametric regression estimation. The methods proposed...
Persistent link: https://www.econbiz.de/10009439712
Motivated by the problem of setting prediction intervals in time series analysis, we suggest two new methods for conditional distribution estimation. The first method is based on locally fitting a logistic model and is in the spirit of recent work on locally parametric techniques in density...
Persistent link: https://www.econbiz.de/10009437734
Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given...
Persistent link: https://www.econbiz.de/10009439469
Motivated by prediction problems for time series with heavy-tailed marginal distributions, we consider methods based on `local least absolute deviations' for estimating a regression median from dependent data. Unlike more conventional `local median' methods, which are in effect based on locally...
Persistent link: https://www.econbiz.de/10009439518
This paper concerns statistical tests for simple structures such as parametric models, lower order models and additivity in a general nonparametric autoregression setting. We propose to use a modified L2-distance between the nonparametric estimator of regression function and its counterpart...
Persistent link: https://www.econbiz.de/10009439713
The class of generalized autoregressive conditional heteroscedastic (GARCH) models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of...
Persistent link: https://www.econbiz.de/10009439775
In the analysis of microarray data, and in some other contemporary statistical problems, it is not uncommon to apply hypothesis tests in a highly simultaneous way. The number, N say, of tests used can be much larger than the sample sizes, n, to which the tests are applied, yet we wish to...
Persistent link: https://www.econbiz.de/10009439776
ARCH and GARCH models directly address the dependency of conditional second moments, and have proved particularly valuable in modelling processes where a relatively large degree of fluctuation is present. These include financial time series, which can be particularly heavy tailed. However,...
Persistent link: https://www.econbiz.de/10009440273
We consider local least absolute deviation (LLAD) estimation for trend functions of time series with heavy tails which are characterised via a symmetric stable law distribution. The setting includes both causal stable ARMA model and fractional stable ARIMA model as special cases. The asymptotic...
Persistent link: https://www.econbiz.de/10009440424
ARCH/GARCH representations of financial series usually attempt to model the serial correlation structure of squared returns. Although it is undoubtedly true that squared returns are correlated, there is increasing empirical evidence of stronger correlation in the absolute returns than in squared...
Persistent link: https://www.econbiz.de/10009440466