Showing 1 - 10 of 652,431
The topic of this chapter is forecasting with nonlinear models. First, a number of well-known nonlinear models are introduced and their properties discussed. These include the smooth transition regression model, the switching regression model whose univariate counterpart is called threshold...
Persistent link: https://www.econbiz.de/10014023698
This paper proposes a machine learning approach to estimate physical forward default intensities. Default probabilities are computed using artificial neural networks to estimate the intensities of the inhomogeneous Poisson processes governing default process. The major contribution to previous...
Persistent link: https://www.econbiz.de/10012419329
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric...
Persistent link: https://www.econbiz.de/10013137781
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can...
Persistent link: https://www.econbiz.de/10013137783
In this paper we present the Radial Basis Neural Network Function. We examine some simple numerical examples of time-series in economics and finance. The forecasting performance is significant superior, especially in financial time-series, to traditional econometric modeling indicating that...
Persistent link: https://www.econbiz.de/10013138753
In this paper we examine feed-forward neural networks using genetic algorithms in the training process instead of error backpropagation algorithm. Additionally real encoding is preferred to binary encoding as it is more appropriate to find the optimum weights. We use learning and momentum rates...
Persistent link: https://www.econbiz.de/10013138757
This paper aims to explore the forecasting accuracy of RON/USD exchange rate structural models with monetary fundamentals. I used robust regression approach for constructing robust neural models less sensitive to contamination with outliers and I studied its predictability on 1 to 6-month...
Persistent link: https://www.econbiz.de/10013001999
In this paper we examine and present the methodology of feed-forward neural networks with error backpropagation algorithm and non-linear methods. We test some applications of time-series analysis in economics. The first part is consisted by applications following the traditional approach of...
Persistent link: https://www.econbiz.de/10014191880
In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econometrics are presented and some of their properties discussed. This includes two models based on universal approximators: the Kolmogorov-Gabor polynomial model and...
Persistent link: https://www.econbiz.de/10014199417
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an...
Persistent link: https://www.econbiz.de/10014496850