Showing 1 - 10 of 93
Assessing the extreme events is crucial in financial risk management. All risk managers and financial institutions want to know the risk of their portfolio under rare events scenarios. We illustrate a multivariate market risk estimating method which employs Monte Carlo simulations to estimate...
Persistent link: https://www.econbiz.de/10010322252
This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These … models are characterized by nonparametric invariant distributions and parametric copula functions; where the copulas capture … maximum likelihood estimation (MLE) for the copula parameter, the invariant distribution and the conditional quantiles. We …
Persistent link: https://www.econbiz.de/10010288444
The Basel Committee on Banking Supervision (BCBS) (2013) recently proposed shifting the quantitative risk metrics system from Value-at-Risk (VaR) to Expected Shortfall (ES). The BCBS (2013) noted that "a number of weaknesses have been identified with using VaR for determining regulatory capital...
Persistent link: https://www.econbiz.de/10011288403
We propose a multivariate dynamic intensity peaks-over-threshold model to capture extreme events in a multivariate time series of returns. The random occurrence of extreme events exceeding a threshold is modeled by means of a multivariate dynamic intensity model allowing for feedback effects...
Persistent link: https://www.econbiz.de/10011335446
Using daily return data from the four major Central and Eastern European stock markets including fourteen highly liquid stocks and ATX (Vienna), PX (Prague), BUX (Budapest), and WIG20 (Warsaw) market indices, we model the value-at-risk using a set of univariate GARCH-type models. Our results...
Persistent link: https://www.econbiz.de/10010322212
We analyze the impact of the estimation frequency - updating parameter estimates on a daily, weekly, monthly or quarterly basis - for commonly used GARCH models in a large-scale study, using more than twelve years (2000-2012) of daily returns for constituents of the S&P 500 index. We assess the...
Persistent link: https://www.econbiz.de/10010326343
We present an accurate and efficient method for Bayesian forecasting of two financial risk measures, Value-at-Risk and Expected Shortfall, for a given volatility model. We obtain precise forecasts of the tail of the distribution of returns not only for the 10-days-ahead horizon required by the...
Persistent link: https://www.econbiz.de/10012114771
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012114810
We investigate the effect of estimation error on backtests of (multi-period) expected shortfall (ES) forecasts. These backtests are based on first order conditions of a recently introduced family of jointly consistent loss functions for Value-at-Risk (VaR) and ES. We provide explicit expressions...
Persistent link: https://www.econbiz.de/10012114811
Bank risk managers follow the Basel Committee on Banking Supervision (BCBS) recommendations that recently proposed shifting the quantitative risk metrics system from Value-at-Risk (VaR) to Expected Shortfall (ES). The Basel Committee on Banking Supervision (2013, p. 3) noted that: “a number of...
Persistent link: https://www.econbiz.de/10011451509