Showing 1 - 10 of 14
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By...
Persistent link: https://www.econbiz.de/10010325913
Under the condition that the observations, which come from a high-dimensional population (X,Y), are strongly stationary and strongly-mixing, through using the local linear method, we investigate, in this paper, the strong Bahadur representation of the nonparametric M-estimator for the unknown...
Persistent link: https://www.econbiz.de/10010325393
Motivated by Chaudhuri's work (1996) on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high dimensional spaces. We establish a Bahadur type linear representation for the geometric conditional...
Persistent link: https://www.econbiz.de/10010325602
With the aim to mitigate the possibleproblem of negativity in the estimation of the conditionaldensity function, we introduce a so-called re-weightedNadaraya-Watson (RNW) estimator. The proposed RNWestimator is constructed by a slight modificationof the well-known Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10010324908
The asymmetric moving average model (asMA) is extended to allow forasymmetric quadratic conditional heteroskedasticity (asQGARCH). Theasymmetric parametrization of the conditional variance encompassesthe quadratic GARCH model of Sentana (1995). We introduce a framework fortesting asymmetries in...
Persistent link: https://www.econbiz.de/10010324389
Motivated by the problem of setting prediction intervals in time seriesanalysis, this investigation is concerned with recovering a regression functionm(X_t) on the basis of noisy observations taking at random design pointsX_t.It is presumed that the corresponding observations are corrupted by...
Persistent link: https://www.econbiz.de/10010324657
In this paper, we present a new time series model, whichdescribes self-exciting threshold autoregressive (SETAR) nonlinearityand seasonality simultaneously. The model is termed multiplicativeseasonal SETAR (SEASETAR). It can be viewed as a special case of ageneral non-multiplicativeSETAR model...
Persistent link: https://www.econbiz.de/10010324709
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers_new published in these...
Persistent link: https://www.econbiz.de/10010325604
This paper describes a forecasting exercise of close-to-open returns on major global stock indices, based on price patterns from foreign markets that have become available overnight. As the close-to-open gap is a scalar response variable to a functional variable, it is natural to focus on...
Persistent link: https://www.econbiz.de/10010325699
Often socio-economic variables are measured on a discrete scale or rounded to protect confidentiality. Nevertheless, when exploring the effect of a relevant covariate on the whole outcome distribution of a discrete response variable, virtually all common quantile regression methods require the...
Persistent link: https://www.econbiz.de/10010325868