Showing 1 - 10 of 967
We explore convenient analytic properties of distributions constructed as mixtures of scaled and shifted t-distributions. A feature that makes this family particularly desirable for econometric applications is that it possesses closed-form expressions for its anti-derivatives (e.g., the...
Persistent link: https://www.econbiz.de/10010293996
Neural networks (NN) and fuzzy logic systems (FLS) are used successfully for financial forecasting, credit rating and portfolio management. In search for more sophisticated modeling techniques a mixture of NN and FLS has proved to be worth consideration. We propose the novel constructive...
Persistent link: https://www.econbiz.de/10010301758
In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from...
Persistent link: https://www.econbiz.de/10011807392
In this paper we design a simple trading strategy to exploit the hypothesized distinct informational content of the arithmetic and geometric mean. The rejection of cointegration between the two stock market indicators supports this conjecture. The profits generated by this cheaply replicable...
Persistent link: https://www.econbiz.de/10010291049
The literature on electoral cycles has developed in two distinct phases. The first one considered the existence of non-rational (naive) voters whereas the second one considered fully rational voters. In our perspective, an intermediate approach is more interesting, i.e. one that considers...
Persistent link: https://www.econbiz.de/10010295273
In this paper we apply statistical inference techniques to build neural network models which are able to explain the prices of call options written on the German stock index DAX. By testing for the explanatory power of several input variables serving as network inputs, some insight into the...
Persistent link: https://www.econbiz.de/10010299651
In this article we examine how model selection in neural networks can be guided by statistical procedures such as hypotheses tests, information criteria and cross validation. The application of these methods in neural network models is discussed, paying attention especially to the identification...
Persistent link: https://www.econbiz.de/10010299652
Many economic and econometric applications require the integration of functions lacking a closed form antiderivative, which is therefore a task that can only be solved by numerical methods. We propose a new family of probability densities that can be used as substitutes and have the property of...
Persistent link: https://www.econbiz.de/10010301753
The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling applications has generally been limited to functions based upon the multiplicative fuzzy implication rule for theoretical and computational reasons. We derive a universal approximation result for the...
Persistent link: https://www.econbiz.de/10010301773
In this article we evaluate the pricing performance of the rather simple but revolutionary Black-Scholes model and one of the more complex techniques (neural networks) on the European-style S&P Index call and put options over the period of 1.6.2006 till 8.6.2007. Our results on call options show...
Persistent link: https://www.econbiz.de/10010322207