Showing 1 - 9 of 9
We assume that some consistent estimator of an equilibrium relation between non-stationary fractionally integrated series is used in a first step to compute residuals (or differences thereof). We propose to apply the semiparametric log-periodogram regression to the (differenced) residuals in...
Persistent link: https://www.econbiz.de/10010323712
We consider cointegration rank estimation for a p-dimensional Fractional Vector Error Correction Model. We propose a new two-step procedure which allows testing for further long-run equilibrium relations with possibly different persistence levels. The first step consists in estimating the...
Persistent link: https://www.econbiz.de/10010377205
In a number of semiparametric models, smoothing seems necessary in order to obtain estimates of the parametric component which are asymptotically normal and converge at parametric rate. However, smoothing can inflate the error in the normal approximation, so that refined approximations are of...
Persistent link: https://www.econbiz.de/10010318446
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series non...
Persistent link: https://www.econbiz.de/10010318525
Panel data, whose series length T is large but whose cross-section size N need not be, are assumed to have a common time trend. The time trend is of unknown form, the model includes additive, unknown, individual-specific components, and we allow for spatial or other cross-sectional dependence...
Persistent link: https://www.econbiz.de/10010288338
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010288343
Power law or generalized polynomial regressions with unknown real-valued exponents and coefficients, and weakly dependent errors, are considered for observations over time, space or space-time. Consistency and asymptotic normality of nonlinear least squares estimates of the parameters are...
Persistent link: https://www.econbiz.de/10010288353
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10010288370
We provide a general class of tests for correlation in time series, spatial, spatio-temporal and cross-sectional data. We motivate our focus by reviewing how computational and theoretical difficulties of point estimation mount as one moves from regularly-spaced time series data, through forms of...
Persistent link: https://www.econbiz.de/10010318473