Showing 1 - 9 of 9
Tests for identification through heteroskedasticity in structural vector autoregressive analysis are developed for models with two volatility states where the time point of volatility change is known. The tests are Wald type tests for which only the unrestricted model including the covariance...
Persistent link: https://www.econbiz.de/10011919912
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized...
Persistent link: https://www.econbiz.de/10010273668
This note studies the geometric ergodicity of nonlinear autoregressive models with conditionally heteroskedastic errors. A nonlinear autoregression of order p (AR(p)) with the conditional variance specified as the conventional linear autoregressive conditional heteroskedasticity model of order q...
Persistent link: https://www.econbiz.de/10010273682
We develop likelihood-based tests for autocorrelation and predictability in a first order non-Gaussian and noninvertible ARMA model. Tests based on a special case of the general model, referred to as an all-pass model, are also obtained. Data generated by an all-pass process are uncorrelated...
Persistent link: https://www.econbiz.de/10010500219
We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more fl exible forms of conditional...
Persistent link: https://www.econbiz.de/10010500222
This paper studies a class of Markov models which consist of two components. Typically, one of the components is observable and the other is unobservable or 'hidden'. Conditions under which (a form of) geometric ergodicity of the unobservable component is inherited by the joint process formed of...
Persistent link: https://www.econbiz.de/10010281184
This paper studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a nonlinear first order generalized autoregressive conditional heteroskedasticity...
Persistent link: https://www.econbiz.de/10010281309
This paper contains two novelties. First, a unified framework for testing and evaluating the adequacy of an estimated autoregressive conditional duration (ACD) model is presented. Second, two new classes of ACD models, the smooth transition ACD model and the time-varying ACD model, are...
Persistent link: https://www.econbiz.de/10010281462
Tests for identification through heteroskedasticity in structural vector autoregressive analysis are developed for models with two volatility states where the time point of volatility change is known. The tests are Wald-type tests for which only the unrestricted model, including the covariance...
Persistent link: https://www.econbiz.de/10012509003