Showing 1 - 10 of 12
We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound...
Persistent link: https://www.econbiz.de/10010368240
We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)..p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate...
Persistent link: https://www.econbiz.de/10011445708
We consider the problem of testing hypotheses regarding the covariance matrix of multivariate normal data, if the sample size s and dimension n satisfy lim [n,s→∞] n/s = y. Recently, several tests have been proposed in the case, where the sample size and dimension are of the same order, that...
Persistent link: https://www.econbiz.de/10010306288
We review recent progress in modeling credit risk for correlated assets. We employ a new interpretation of the Wishart model for random correlation matrices to model non-stationary effects. We then use the Merton model in which default events and losses are derived from the asset values at...
Persistent link: https://www.econbiz.de/10011996600
This paper makes several contributions to the literature on the important yet difficult problem of estimating functions nonparametrically using instrumental variables. First, we derive the minimax optimal sup-norm convergence rates for nonparametric instrumental variables (NPIV) estimation of...
Persistent link: https://www.econbiz.de/10011445741
There is considerable literature on matrix-variate gamma distributions, also known as Wishart distributions, which are driven by a shape parameter with values in the (Gindikin) set {i/2, i = 1, . . . , k−1}∪((k−1)/2, É). We provide an extension of this class to the case where the shape...
Persistent link: https://www.econbiz.de/10014331150
In this paper we re-visit a recent theoretical idea introduced by Phillips and Lee (2015). They examine an empirically relevant situation when multiple time series under consideration exhibit different degrees of non-stationarity. By bridging the asymptotic theory of the local to unity and...
Persistent link: https://www.econbiz.de/10013208843
We propose a nonparametric test for checking parametric hypotheses about the stationary density of weakly dependent observations. The test statistic is based on the L2-distance between a nonparametric and a smoothed version of a parametric estimate of the stationary density. It can be shown that...
Persistent link: https://www.econbiz.de/10010309888
Theory in time series analysis is often developed in the context of finite-dimensional models for the data generating process. Whereas corresponding estimators such as those of a conditional mean function are reasonable even if the true dependence mechanism is of a more complex structure, it is...
Persistent link: https://www.econbiz.de/10010310822
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10010288325