Showing 1 - 10 of 16
We study a general class of semiparametric estimators when the infinite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g. estimate nonlinear models with...
Persistent link: https://www.econbiz.de/10011414988
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step, but retain a fully nonparametric specification in the first step. Such estimators exist in many economic applications, including a wide range of missing data and...
Persistent link: https://www.econbiz.de/10010329044
In this paper, we propose Phillips-Perron type, semiparametric testing procedures to distinguish a unit root process from a mean-reverting exponential smooth transition autoregressive one. The limiting nonstandard distributions are derived under very general conditions and simulation evidence...
Persistent link: https://www.econbiz.de/10010262936
A key assumption in regression discontinuity analysis is that units cannot manipulate the value of their running variable in a way that guarantees or avoids assignment to the treatment. Standard identification arguments break down if this condition is violated. This paper shows that treatment...
Persistent link: https://www.econbiz.de/10011428837
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011494361
The key assumption in regression discontinuity analysis is that the distribution of potential outcomes varies smoothly with the running variable around the cutoff. In many empirical contexts, however, this assumption is not credible; and the running variable is said to be manipulated in this...
Persistent link: https://www.econbiz.de/10013189727
Estimators of average treatment effects under unconfounded treatment assignment are known to become rather imprecise if there is limited overlap in the covariate distributions between the treatment groups. But such limited overlap can also have a detrimental effect on inference, and lead for...
Persistent link: https://www.econbiz.de/10010481652
This paper proposes a decomposition of the composition effect, i.e. the part of the observed between-group difference in the distribution of some economic outcome that can be explained by differences in the distribution of covariates. Our decomposition contains three types of components: (i) the...
Persistent link: https://www.econbiz.de/10010282410
We propose a specification test for a wide range of parametric models for the conditional distribution function of an outcome variable given a vector of covariates. The test is based on the Cramer-von Mises distance between an unrestricted estimate of the joint distribution function of the data,...
Persistent link: https://www.econbiz.de/10010282420
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10010282430