Showing 1 - 10 of 15
Purpose - China's marine economy occupies an important position within the national economy, and its contribution thereto is constantly improving. The overall operation of the marine economy shows positive developmental trends with potential for further growth. The purpose of this research is to...
Persistent link: https://www.econbiz.de/10015419016
The measurement of treatment (intervention) effects on a single (or just a few) treated unit(s) based on counterfactuals constructed from artificial controls has become a popular practice in applied statistics and economics since the proposal of the synthetic control method. In high-dimensional...
Persistent link: https://www.econbiz.de/10012817068
Factor and sparse models are two widely used methods to impose a low-dimensional structure in high dimension. They are seemingly mutually exclusive. In this paper, we propose a simple lifting method that combines the merits of these two models in a supervised learning methodology that allows to...
Persistent link: https://www.econbiz.de/10012817071
High-dimensional covariates often admit linear factor structure. To effectively screen correlated covariates in high-dimension, we propose a conditional variable screening test based on non-parametric regression using neural networks due to their representation power. We ask the question whether...
Persistent link: https://www.econbiz.de/10015063853
We consider estimation of a dynamic distribution regression panel data model with heterogeneous coefficients across units. The objects of interest are functionals of these coefficients including linear projections on unit level covariates. We also consider predicted actual and stationary...
Persistent link: https://www.econbiz.de/10013351775
Common high-dimensional methods for prediction rely on having either a sparse signal model, a model in which most parameters are zero and there are a small number of non-zero parameters that are large in magnitude, or a dense signal model, a model with no large parameters and very many small...
Persistent link: https://www.econbiz.de/10011445720
Common high-dimensional methods for prediction rely on having either a sparse signal model, a model in which most parameters are zero and there are a small number of non-zero parameters that are large in magnitude, or a dense signal model, a model with no large parameters and very many small...
Persistent link: https://www.econbiz.de/10011445767
It has been well known in financial economics that factor betas depend on observed instruments such as firm specific characteristics and macroeconomic variables, and a key object of interest is the effect of instruments on the factor betas. One of the key features of our model is that we specify...
Persistent link: https://www.econbiz.de/10012028605
Inference on partially identified models plays an important role in econometrics. This paper proposes novel Bayesian procedures for these models when the identified set is closed and convex and so is completely characterized by its support function. We shed new light on the connection between...
Persistent link: https://www.econbiz.de/10011687923
We consider inference about coefficients on a small number of variables of interest in a linear panel data model with additive unobserved individual and time specific effects and a large number of additional time-varying confounding variables. We allow the number of these additional confounding...
Persistent link: https://www.econbiz.de/10011687926