Showing 1 - 10 of 32
In this paper, we demonstrate how a well-established machine learning-based statistical arbitrage strategy can be successfully transferred from equity to futures markets. First, we preprocess futures time series comprised of front months to render them suitable for our returns-based trading...
Persistent link: https://www.econbiz.de/10012611676
Most statistical arbitrage strategies in the academic literature soley rely on price time series. By contrast, alternative data sources are of growing importance for professional investors. We contribute to bridging this gap by assessing the price-predictive value of more than nine million...
Persistent link: https://www.econbiz.de/10011956580
Machine learning research has gained momentum-also in finance. Consequently, initial machine-learning-based statistical arbitrage strategies have emerged in the U.S. equities markets in the academic literature, see e.g., Takeuchi and Lee (2013); Moritz and Zimmermann (2014); Krauss et al....
Persistent link: https://www.econbiz.de/10012611167
The majority of electronic markets worldwide employ limit order books, and the recently emerging exchanges for cryptocurrencies pose no exception. With this work, we empirically analyze whether commonly observed empirical properties from established limit order exchanges transfer to the...
Persistent link: https://www.econbiz.de/10012611173
Long short-term memory (LSTM) networks are a state-of-the-art technique for sequence learning. They are less commonly applied to financial time series predictions, yet inherently suitable for this domain. We deploy LSTM networks for predicting out-of-sample directional movements for the...
Persistent link: https://www.econbiz.de/10011644777
We present a comprehensive simulation study to assess and compare the performance of popular machine learning algorithms for time series prediction tasks. Specifically, we consider the following algorithms: multilayer perceptron (MLP), logistic regression, naïve Bayes, k-nearest neighbors,...
Persistent link: https://www.econbiz.de/10011784950
The advent of reinforcement learning (RL) in financial markets is driven by several advantages inherent to this field of artificial intelligence. In particular, RL allows to combine the "prediction" and the "portfolio construction" task in one integrated step, thereby closely aligning the...
Persistent link: https://www.econbiz.de/10011911059
We apply state-of-the-art financial machine learning to assess the return-predictive value of more than 45,000 earnings announcements on a majority of S&P1500 constituents. To represent the diverse information content of earnings announcements, we generate predictor variables based on various...
Persistent link: https://www.econbiz.de/10012201836
This paper presents the first large-scale application of deep reinforcement learning to optimize the placement of limit orders at cryptocurrency exchanges. For training and out-of-sample evaluation, we use a virtual limit order exchange to reward agents according to the realized shortfall over a...
Persistent link: https://www.econbiz.de/10012206907
We leverages computational linguistics to determine how the narrative content of earnings conference calls influences investors' uncertainty about a firm's future valuation. By applying statistical topic modeling to a corpus of 18,254 conference calls, we extract topics and tones from both...
Persistent link: https://www.econbiz.de/10014282699