Showing 1 - 10 of 5,393
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10010295743
We introduce a new hybrid approach to joint estimation of Value at Risk (VaR) and Expected Shortfall (ES) for high quantiles of return distributions. We investigate the relative performance of VaR and ES models using daily returns for sixteen stock market indices (eight from developed and eight...
Persistent link: https://www.econbiz.de/10010265962
We propose a new method of testing stochastic dominance which improves on existing tests based on bootstrap or subsampling. Our test requires estimation of the contact sets between the marginal distributions. Our tests have asymptotic sizes that are exactly equal to the nominal level uniformly...
Persistent link: https://www.econbiz.de/10010318570
Motivated by economic-theory concepts - the Fisher hypothesis and the theory of the term structure - we consider a small set of simple bivariate closed-loop time-series models for the prediction of price inflation and of long- and short-term interest rates. The set includes vector...
Persistent link: https://www.econbiz.de/10010294000
Common approaches to test for the economic value of directional forecasts are based on the classical Chi-square test for independence, Fisher’s exact test or the Pesaran and Timmerman (1992) test for market timing. These tests are asymptotically valid for serially independent observations....
Persistent link: https://www.econbiz.de/10010271838
This paper discusses methods to quantify risk and uncertainty in macroeconomic forecasts. Both, parametric and non-parametric procedures are developed. The former are based on a class of asymmetrically weighted normal distributions whereas the latter employ asymmetric bootstrap simulations. Both...
Persistent link: https://www.econbiz.de/10010295862
Many statistical applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the...
Persistent link: https://www.econbiz.de/10010316854
Growth rate data that are collected incompletely in cross-sections is a quite frequent problem. Chow and Lin (1971) have developed a method for predicting unobserved disaggregated time series and we propose an extension of the procedure for completing cross-sectional growth rates similar to the...
Persistent link: https://www.econbiz.de/10010293994
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10010320769
In this paper we compare the in-sample fit and out-of-sample forecasting performance of no-arbitrage quadratic and essentially affine term structure models, as well as the dynamic Nelson-Siegel model. In total eleven model variants are evaluated, comprising five quadratic, four affine and two...
Persistent link: https://www.econbiz.de/10011605251