Showing 1 - 10 of 26
There has been an increased number of papers in the literature in recent years, applying several methods and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily observations of the drachma rates against four major currencies, namely the U.S. Dollar...
Persistent link: https://www.econbiz.de/10008490505
Neural network models were compared to traditional forecasting methods in forecasting the quarterly and monthly farm price of hogs. A quarterly neural network model forecasted poorly in comparison to a quarterly econometric model. A monthly neural network model outperformed a monthly ARIMA model...
Persistent link: https://www.econbiz.de/10008550396
This work describes an award winning approach for solving the NN3 Forecasting Competition problem, focusing on the sound experimental validation of its main innovative feature. The NN3 forecasting task consisted of predicting 18 future values of 111 short monthly time series. The main feature of...
Persistent link: https://www.econbiz.de/10010573793
Forecasts of demand are crucial to drive supply chains and enterprise resource planning systems. Usually, well-known univariate methods that work automatically such as exponential smoothing are employed to accomplish such forecasts. The traditional Supply Chain relies on a decentralized system...
Persistent link: https://www.econbiz.de/10010573958
Using a panel of 439 German regions, we evaluate and compare the performance of various Neural Network (NN) models as forecasting tools for regional employment growth. Because of relevant differences in data availability between the former East and West Germany, the NN models are computed...
Persistent link: https://www.econbiz.de/10010547790
This paper considers a sequence of misspecification tests for a flexible nonlinear time series model. The model is a generalization of both the Smooth Transition AutoRegressive (STAR) and the AutoRegressive Artificial Artificial Neural Network (AR-ANN) models. The tests are Lagrange multiplier...
Persistent link: https://www.econbiz.de/10005649305
In this paper, we propose a flexible smooth transition autoregressive (STAR) model with multiple regimes and multiple transition variables. We show that this formulation can be interpreted as a time varying linear model where the coefficients are the outputs of a single hidden layer feedforward...
Persistent link: https://www.econbiz.de/10005649332
In recent years, forecasting demand for residential construction in Singapore has become more vital, since it is widely perceived that the next trough of the real estate cycle is approaching. This paper evaluates the use of a combination of neural networks (NNs) and genetic algorithms (GAs) to...
Persistent link: https://www.econbiz.de/10005633179
Statistical Learning refers to statistical aspects of automated extraction of regularities (structure) in datasets. It is a broad area which includes neural networks, regression-trees, nonparametric statistics and sieve approximation, boosting, mixtures of models, computational complexity,...
Persistent link: https://www.econbiz.de/10008691632
Financial forecasting is a difficult task due to the intrinsic complexity of the financial system. A simplified approach in forecasting is given by "black box" methods like neural networks that assume little about the structure of the economy. In the present paper we relate our experience using...
Persistent link: https://www.econbiz.de/10005050846