Showing 1 - 10 of 222
This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing...
Persistent link: https://www.econbiz.de/10011092147
This paper derives the exact distribution of the maximum likelihood estimator of a first-order linear autoregression with an exponential disturbance term. We also show that, even if the process is stationary, the estimator is T-consistent, where T is the sample size. In the unit root case, the...
Persistent link: https://www.econbiz.de/10005676624
Persistent link: https://www.econbiz.de/10005687536
This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when only discrete observations are available. The estimation is carried out using a tuned MCMC method, in particular a blcked Metropolis-Hastings algorithm, by introducing auxiliary points and...
Persistent link: https://www.econbiz.de/10005687550
In this paper we will rigourously study some of the properties of continuous time stochastic volatility models. We have five main results, including: the stochastic volatility class can be linked to Cox process based models of tick-by-tick financial data; we characterise the moments,...
Persistent link: https://www.econbiz.de/10005812266
Persistent link: https://www.econbiz.de/10005228926
Realized kernels use high-frequency data to estimate daily volatility of individual stock prices. They can be applied to either trade or quote data. Here we provide the details of how we suggest implementing them in practice. We compare the estimates based on trade and quote data for the same...
Persistent link: https://www.econbiz.de/10008469058
GARCH models are commonly used as latent processes in econometrics, financial economics and macroeconomics. Yet no exact likelihood analysis of these models has been provided so far. In this paper we outline the issues and suggest a Markov chain Monte Carlo algorithm which allows the calculation...
Persistent link: https://www.econbiz.de/10005509811
This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned...
Persistent link: https://www.econbiz.de/10005509815
We consider kernel-based estimators of integrated variances in the presence of independent market microstructure effects. We derive the bias and variance properties for all regular kernel-based estimators and derive a lower bound for their asymptotic variance. Further we show that the...
Persistent link: https://www.econbiz.de/10005509833