Showing 1 - 10 of 224
A new class of kernels for long-run variance and spectral density estimation is developed by exponentiating traditional quadratic kernels. Depending on whether the exponent parameter is allowed to grow with the sample size, we establish different asymptotic approximations to the sampling...
Persistent link: https://www.econbiz.de/10005400824
In time series regressions with nonparametrically autocorrelated errors, it is now standard empirical practice to use kernel-based robust standard errors that involve some smoothing function over the sample autocorrelations. The underlying smoothing parameter b, which can be defined as the ratio...
Persistent link: https://www.econbiz.de/10005093965
This paper considers studentized tests in time series regressions with nonparametrically autocorrelated errors. The studentization is based on robust standard errors with truncation lag M=bT for some constant b is an element of (0, 1] and sample size T. It is shown that the nonstandard fixed-b...
Persistent link: https://www.econbiz.de/10005129963
A new class of kernel estimates is proposed for long run variance (LRV) and heteroskedastic autocorrelation consistent (HAC) estimation. The kernels are called steep origin kernels and are related to a class of sharp origin kernels explored by the authors (2003) in other work. They are...
Persistent link: https://www.econbiz.de/10005748789
Using the power kernels of Phillips, Sun and Jin (2006, 2007), we examine the large sample asymptotic properties of the t-test for different choices of power parameter (rho). We show that the nonstandard fixed-rho limit distributions of the t-statistic provide more accurate approximations to the...
Persistent link: https://www.econbiz.de/10008493456
A new family of kernels is suggested for use in heteroskedasticity and autocorrelation consistent (HAC) and long run variance (LRV) estimation and robust regression testing. The kernels are constructed by taking powers of the Bartlett kernel and are intended to be used with no truncation (or...
Persistent link: https://www.econbiz.de/10005762824
A new class of kernel estimates is proposed for long run variance (LRV) and heteroskedastic autocorrelation consistent (HAC) estimation. The kernels are called steep origin kernels and are related to a class of sharp origin kernels explored by the authors (2003) in other work. They are...
Persistent link: https://www.econbiz.de/10004990684
Using the power kernels of Phillips, Sun, and Jin (2006, 2007), we examine the large sample asymptotic properties of the <italic>t</italic>-test for different choices of power parameter (<italic>ρ</italic>). We show that the nonstandard fixed-<italic>ρ</italic> limit distributions of the <italic>t</italic>-statistic provide more accurate approximations to the...
Persistent link: https://www.econbiz.de/10009645087
In this paper, we construct a new class of kernel by exponentiating conventional kernels and use them in the long run variance estimation with and without smoothing. Depending on whether the exponent is allowed to grow with the sample size, we establish different asymptotic approximations to the...
Persistent link: https://www.econbiz.de/10010536432
Sharp origin kernels, constructed by taking powers of the Bartlett kernel, are suggested for use in heteroskedasticity and autocorrelation consistent (HAC) estimation with no truncation (or bandwidth) parameter. When the power parameter (rho) is fixed, analysis and simulations indicate that...
Persistent link: https://www.econbiz.de/10010536453