Showing 1 - 10 of 184
In this paper a modified double smoothing bandwidth selector, ^h MDS , based on a new criterion, which combines the plug-in and the double smoothing ideas, is proposed. A self-complete iterative double smoothing rule (^h_IDS ) is introduced as a pilot method. The asymptotic properties of both...
Persistent link: https://www.econbiz.de/10005741214
Persistent link: https://www.econbiz.de/10005562280
A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper...
Persistent link: https://www.econbiz.de/10005562284
Nonparametric regression with long-range and antipersistent errors is considered. Local polynomial smoothing is investigated for the estimation of the trend function and its derivatives. It is well known that in the presence of long memory (with a fractional differencing parameter 0 d 1/2),...
Persistent link: https://www.econbiz.de/10005562289
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10005562296
This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency financial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and...
Persistent link: https://www.econbiz.de/10005562306
Persistent link: https://www.econbiz.de/10005146725
In this paper a robust data-driven procedure for decomposing seasonal time series based on a generalized Berlin Method (BV, Berliner Verfahren) as proposed by Heiler and Michels (1994) is discussed. The basic robust algorithm used here is an adaptation of the LOWESS (LOcally Weighted Scatterplot...
Persistent link: https://www.econbiz.de/10005146729
Persistent link: https://www.econbiz.de/10005146754
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10005146755