Showing 1 - 10 of 23,775
We propose a methodology for producing forecast densities for economic aggregates based on disaggregate evidence. Our ensemble predictive methodology utilizes a linear mixture of experts framework to combine the forecast densities from potentially many component models. Each component represents...
Persistent link: https://www.econbiz.de/10010607781
We propose a methodology for producing forecast densities for economic aggregates based on disaggregate evidence. Our ensemble predictive methodology utilizes a linear mixture of experts framework to combine the forecast densities from potentially many component models. Each component represents...
Persistent link: https://www.econbiz.de/10008516805
We argue that the next generation of macro modellers at Inflation Targeting central banks should adapt a methodology from the weather forecasting literature known as `ensemble modelling'. In this approach, uncertainty about model specifications (e.g., initial conditions, parameters, and boundary...
Persistent link: https://www.econbiz.de/10004976646
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010986379
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models with many variables....
Persistent link: https://www.econbiz.de/10011272306
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10011272583
This paper develops methods for automatic selection of variables in forecasting Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic (linear and nonlinear) VARs. The performance...
Persistent link: https://www.econbiz.de/10008593003
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large...
Persistent link: https://www.econbiz.de/10010610485
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large...
Persistent link: https://www.econbiz.de/10008764097
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10011124200