Showing 1 - 10 of 902
We consider the nonstationary fractional model $\Delta^{d}X_{t}=\varepsilon _{t}$ with $\varepsilon_{t}$ i.i.d.$(0,\sigma^{2})$ and $d1/2$. We derive an analytical expression for the main term of the asymptotic bias of the maximum likelihood estimator of $d$ conditional on initial values, and we...
Persistent link: https://www.econbiz.de/10010851220
We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model based on the conditional Gaussian likelihood. The model allows the process X_{t} to be fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which...
Persistent link: https://www.econbiz.de/10008550313
This paper discusses model based inference in an autoregressive model for fractional processes based on the Gaussian likelihood. We consider the likelihood and its derivatives as stochastic processes in the parameters, and prove that they converge in distribution when the errors are i.i.d. with...
Persistent link: https://www.econbiz.de/10005114110
In this paper we analyze the influence of observed and unobserved initial values on the bias of the conditional maximum likelihood or conditional sum-of-squares (CSS, or least squares) estimator of the fractional parameter, d, in a nonstationary fractional time series model. The CSS estimator is...
Persistent link: https://www.econbiz.de/10011188647
Persistent link: https://www.econbiz.de/10011026270
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data...
Persistent link: https://www.econbiz.de/10005688407
This paper discusses model based inference in an autoregressive model for fractional processes based on the Gaussian likelihood. The model allows for the process to be fractional of order d or d – b; where d ≥ b 1/2 are parameters to be estimated. We model the data X, …, Xт given the...
Persistent link: https://www.econbiz.de/10005749662
We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model, based on the Gaussian likelihood conditional on initial values. We give conditions on the parameters such that the process X_{t} is fractional of order d and cofractional of order d-b;...
Persistent link: https://www.econbiz.de/10008552198
We consider the nonstationary fractional model Delta^d Xt = epsilon t with epsilon t i.i.d.(0;sigma^2) and d 1/2. We derive an analytical expression for the main term of the asymptotic biasof the maximum likelihood estimator of d conditional on initial values, and we discussthe role of the...
Persistent link: https://www.econbiz.de/10010592984
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data...
Persistent link: https://www.econbiz.de/10008866502