Showing 1 - 10 of 514
<p>This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...</p>
Persistent link: https://www.econbiz.de/10009416812
We consider estimation of policy relevant treatment effects in a data-rich environment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endeogenous...
Persistent link: https://www.econbiz.de/10010712644
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010827524
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010827534
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010827563
<p><p><p><p><p>In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve...</p></p></p></p></p>
Persistent link: https://www.econbiz.de/10008539780
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://www.econbiz.de/10005037564
This work studies the large sample properties of the posterior-based inference in the curved exponential family under increasing dimension. The curved structure arises from the imposition of various restrictions on the model, such as moment restrictions, and plays a fundamental role in...
Persistent link: https://www.econbiz.de/10010739821
This work proposes new inference methods for the estimation of a regression coefficient of interest in quantile regression models. We consider high-dimensional models where the number of regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable...
Persistent link: https://www.econbiz.de/10010739822
In this work we consider series estimators for the conditional mean in light of three new ingredients: (i) sharp LLNs for matrices derived from the non-commutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the L∞ and L2-norms, and (iii)...
Persistent link: https://www.econbiz.de/10010739825