Showing 1 - 10 of 17
We consider a model of a financial corporation which has to find an optimal policy balancing its risk and expected profits. The example treated in this paper is related to an insurance company with the risk control method known in the industry as excess-of-loss reinsurance. Under this scheme the...
Persistent link: https://www.econbiz.de/10005390727
Persistent link: https://www.econbiz.de/10011036210
Consider the American put and Russian option (Ann. Appl. Probab. 3 (1993) 603; Theory Probab. Appl. 39 (1994) 103; Ann. Appl. Probab. 3 (1993) 641) with the stock price modeled as an exponential Lévy process. We find an explicit expression for the price in the dense class of Lévy processes with...
Persistent link: https://www.econbiz.de/10008874892
Consider a random walk or Lévy process {St} and let [tau](u) = inf {t[greater-or-equal, slanted]0 : St u}, P(u)(·) = P(· [tau](u) < [infinity]). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. Pareto, Weibull or lognormal), the asymptotic form of the P(u)-distribution of the process {St} up to time [tau](u) is described as u --> [infinity]. Essentially, the results confirm the folklore that level crossing occurs as result of one big jump. Particular sharp conclusions are obtained for...</[infinity]).>
Persistent link: https://www.econbiz.de/10008874973
We study the tail asymptotics of the r.v. X(T) where {X(t)} is a stochastic process with a linear drift and satisfying some regularity conditions like a central limit theorem and a large deviations principle, and T is an independent r.v. with a subexponential distribution. We find that the tail...
Persistent link: https://www.econbiz.de/10008875713
For a random walk with negative mean and heavy-tailed increment distribution F, it is well known that under suitable subexponential assumptions, the distribution [pi] of the maximum has a tail [pi](x,[infinity]) which is asymptotically proportional to . We supplement here this by a local result...
Persistent link: https://www.econbiz.de/10005074680
Let (Y1,...,Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let , Sn=X1+...+Xn. The asymptotics of as n--[infinity] are shown to be the same as for the independent case with the same lognormal marginals. In particular, for...
Persistent link: https://www.econbiz.de/10005074701
We show how, from a single simulation run, to estimate the ruin probabilities and their sensitivities (derivatives) in a classic insurance risk model under various distributions of the number of claims and the claim size. Similar analysis is given for the tail probabilities of the accumulated...
Persistent link: https://www.econbiz.de/10009197952
A risk process with constant premium rate $c$ and Poisson arrivals of claims is considered. A threshold $r$ is defined for claim interarrival times, such that if $k$ consecutive interarrival times are larger than $r$, then the next claim has distribution $G$. Otherwise, the claim size...
Persistent link: https://www.econbiz.de/10009323942
We study the structure of point processes N with the property that the vary in a finite-dimensional space where [theta]t is the shift and the [sigma]-field generated by the counting process up to time t. This class of point processes is strictly larger than Neuts' class of Markovian arrival...
Persistent link: https://www.econbiz.de/10008872734