Showing 1 - 10 of 907
A median of a sequence pi = x1, x2, … , xk of elements of a finite metric space (X, d ) is an element x for which ∑ k, i=1 d(x, xi) is minimum. The function M with domain the set of all finite sequences on X and defined by M(pi) = {x: x is a median of pi} is called the median function on X,...
Persistent link: https://www.econbiz.de/10011204326
The general problem in location theory deals with functions that find sites on a graph (discrete case) or network (continuous case) in such a way as to minimize some cost (or maximize some benefit) to a given set of clients represented by vertices on the graph or points on the network. The...
Persistent link: https://www.econbiz.de/10010732585
A profile = (x1, ..., xk), of length k, in a finite connected graph G is a sequence of vertices of G, with repetitions allowed. A median x of is a vertex for which the sum of the distances from x to the vertices in the profile is minimum. The median function finds the set of all medians of a...
Persistent link: https://www.econbiz.de/10010837743
Maximal outerplanar graphs are characterized using three different classes of graphs. A path-neighborhood graph is a connected graph in which every neighborhood induces a path. The triangle graph $T(G)$ has the triangles of the graph $G$ as its vertices, two of these being adjacent whenever as...
Persistent link: https://www.econbiz.de/10010837834
Persistent link: https://www.econbiz.de/10010731730
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on X. In this...
Persistent link: https://www.econbiz.de/10010837892
A fundamental notion in metric graph theory is that of the interval function I : V × V → 2V – {∅} of a (finite) connected graph G = (V,E), where I(u,v) = { w | d(u,w) + d(w,v) = d(u,v) } is the interval between u and v. An obvious question is whether I can be characterized in a nice way...
Persistent link: https://www.econbiz.de/10011204324
__Abstract__ A median (antimedian) of a profile of vertices on a graph $G$ is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians) of a...
Persistent link: https://www.econbiz.de/10011185629
In 1982, Slater defined path subgraph analogues to the center, median, and (branch or branchweight) centroid of a tree. We define three families of central substructures of trees, including three types of central subtrees of degree at most D that yield the center, median, and centroid for D = 0...
Persistent link: https://www.econbiz.de/10010731589
Let $G = (V,E)$ be a graph. A partition $\pi = \{V_1, V_2, \ldots, V_k \}$ of the vertices $V$ of $G$ into $k$ {\it color classes} $V_i$, with $1 \leq i \leq k$, is called a {\it quorum coloring} if for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$ of...
Persistent link: https://www.econbiz.de/10010731625