Showing 1 - 10 of 49
Correlations between random variables play an important role in applications, e.g. in financial analysis. More precisely, accurate estimates of the correlation between financial returns are crucial in portfolio management. In particular, in periods of financial crisis, extreme movements in...
Persistent link: https://www.econbiz.de/10011056392
Persistent link: https://www.econbiz.de/10005532620
The comparison of the means of two independent samples is one of the most popular problems in real-world data analysis. In the multivariate context, two-sample Hotelling's T² frequently used to test the equality of means of two independent Gaussian random samples assuming either the same or a...
Persistent link: https://www.econbiz.de/10011206306
We propose a Bayesian non-parametric approach for modeling the distribution of multiple returns. In particular, we use an asymmetric dynamic conditional correlation (ADCC) model to estimate the time-varying correlations of financial returns where the individual volatilities are driven by...
Persistent link: https://www.econbiz.de/10010737024
This paper proposes methods to detect outliers in functional datasets. We are interested in challenging scenarios where functional samples are contaminated by outliers that may be difficult to recognize. The task of identifying a typical curves is carried out using the recently proposed...
Persistent link: https://www.econbiz.de/10010787927
This paper presents a general notion of Mahalanobis distance for functional data that extends the classical multivariate concept to situations where the observed data are points belonging to curves generated by a stochastic process. More precisely, a new semi-distance for functional observations...
Persistent link: https://www.econbiz.de/10010861878
Financial returns often present a complex relation with previous observations, along with a slight skewness and high kurtosis. As a consequence, we must pursue the use of flexible models that are able to seize these special features: a financial process that can expose the intertemporal relation...
Persistent link: https://www.econbiz.de/10010861880
GARCH models are commonly used for describing, estimating and predicting the dynamics of financial returns. Here, we relax the usual parametric distributional assumptions of GARCH models and develop a Bayesian semiparametric approach based on modeling the innovations using the class of scale...
Persistent link: https://www.econbiz.de/10011052607
This paper designs a Particle Learning (PL) algorithm for estimation of Bayesian nonparametric Stochastic Volatility (SV) models for financial data. The performance of this particle method is then compared with the standard Markov Chain Monte Carlo (MCMC) methods for non-parametric SV models. PL...
Persistent link: https://www.econbiz.de/10010940764
We enlarge the number of available functional depths by introducing the kernelized functional spatial depth (KFSD). KFSD is a local-oriented and kernel-based version of the recently proposed functional spatial depth (FSD) that may be useful for studying functional samples that require an...
Persistent link: https://www.econbiz.de/10011151299