Showing 1 - 10 of 291
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample...
Persistent link: https://www.econbiz.de/10010877099
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities...
Persistent link: https://www.econbiz.de/10010933110
Persistent link: https://www.econbiz.de/10011006243
We use factor augmented vector autoregressive models with time-varying coe¢ cients to construct a …nancial conditions index. The time-variation in the parameters allows for the weights attached to each …nancial variable in the index to evolve over time. Furthermore, we develop methods for...
Persistent link: https://www.econbiz.de/10011019232
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10009652479
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the...
Persistent link: https://www.econbiz.de/10009653403
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10010540685
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply...
Persistent link: https://www.econbiz.de/10009249355
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample...
Persistent link: https://www.econbiz.de/10009644007
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply...
Persistent link: https://www.econbiz.de/10010550769