Showing 1 - 10 of 29
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10010325702
We apply the splitting method to three well-known counting problems, namely 3-SAT, random graphs with prescribed degrees, and binary contingency tables. We present an enhanced version of the splitting method based on the capture-recapture technique, and show by experiments the superiority of...
Persistent link: https://www.econbiz.de/10010325899
This discussion paper led to a publication in 'Computational Statistics & Data Analysis' 56(11), pp. 3398-1414.Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior...
Persistent link: https://www.econbiz.de/10010325939
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10010326034
Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) requires precise estimation of the tail of the predictive distribution. Two novel concepts are introduced that offer a specific focus on this part of the predictive density: the censored posterior, a...
Persistent link: https://www.econbiz.de/10010326148
This paper presents the R package MitISEM, which provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in...
Persistent link: https://www.econbiz.de/10010326521
In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particularly useful for problems with a highdimensional state space and complex dependence structure of the underlying Markov process with...
Persistent link: https://www.econbiz.de/10003835132
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10011376537
This discussion paper led to a publication in 'Computational Statistics & Data Analysis' 56(11), pp. 3398-1414.Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior...
Persistent link: https://www.econbiz.de/10011377602
Persistent link: https://www.econbiz.de/10009756308