Showing 1 - 10 of 423
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10012958968
This paper develops a two-step estimation methodology, which allows us to apply catastrophe theory to stock market returns with time-varying volatility and model stock market crashes. Utilizing high frequency data, we estimate the daily realized volatility from the returns in the first step and...
Persistent link: https://www.econbiz.de/10012938546
The multi-fractal analysis has been applied to investigate various stylized facts of the financial market including market efficiency, financial crisis, risk evaluation and crash prediction. This paper examines the daily return series of stock index of NASDAQ stock exchange. Also, in this study,...
Persistent link: https://www.econbiz.de/10013273743
This paper develops a two-step estimation methodology, which allows us to apply catastrophe theory to stock market returns with time-varying volatility and model stock market crashes. Utilizing high frequency data, we estimate the daily realized volatility from the returns in the first step and...
Persistent link: https://www.econbiz.de/10010206135
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011674479
Forecasting-volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer of many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011730304
Forecasting-volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer of many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10014124325
A Hidden Markov Model (HMM) is used to model the VIX (the Cboe Volatility Index). A 4- state Gaussian mixture is fitted to the VIX price history from 1990 to 2022. Using a growing window of training data, the price of the S&P500 is predicted and two trading algorithms are presented, based on the...
Persistent link: https://www.econbiz.de/10014356167
Persistent link: https://www.econbiz.de/10009545495
Persistent link: https://www.econbiz.de/10009708826