Showing 1 - 10 of 747
This paper documents that factors extracted from a large set of macroeconomic variables bear useful information for predicting monthly US excess stock returns and volatility over the period 1980-2005. Factor-augmented predictive regression models improve upon both benchmark models that only...
Persistent link: https://www.econbiz.de/10010326025
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010303678
This paper features an analysis of the relationship between the S&P 500 Index and the VIX using daily data obtained from both the CBOE website and SIRCA (The Securities Industry Research Centre of the Asia Pacific). We explore the relationship between the S&P 500 daily continuously compounded...
Persistent link: https://www.econbiz.de/10010326508
Wir verwenden eine neue, auf der Burr-Verteilung basierende Spezifikation aus der Familie der Autoregressive Conditional Duration (ACD) Modelle zur ökonometrischen Analyse der Transaktionsintensitäten während der Börseneinführung (IPO) der Deutsche Telekom Aktie. In diesem Fallbeispiel wird...
Persistent link: https://www.econbiz.de/10010316257
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10010282869
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008663394
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008697981
We estimate a general microstructure model of the transitory and permanent impact of order flow on stock prices. Jumps are detected in both the transaction price (observation equation) and fundamental value (state equation). The model's parameters and variances are updated in real time. Prices...
Persistent link: https://www.econbiz.de/10010256970