Showing 1 - 3 of 3
Statistical scientists have recently focused sharp attention on properties of iterated chaotic maps, with a view to employing such processes to model naturally occurring phenomena. In the present paper we treat the logistic map, which has earlier been studied in the context of modelling...
Persistent link: https://www.econbiz.de/10008694546
Persistent link: https://www.econbiz.de/10011011632
Denote the integer lattice points in the <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>N</mi> </math> </EquationSource> </InlineEquation>-dimensional Euclidean space by <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathbb {Z}^N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>N</mi> </msup> </math> </EquationSource> </InlineEquation> and assume that <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$X_\mathbf{n}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>X</mi> <mi mathvariant="bold">n</mi> </msub> </math> </EquationSource> </InlineEquation>, <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mathbf{n} \in \mathbb {Z}^N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="bold">n</mi> <mo>∈</mo> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>N</mi> </msup> </mrow> </math> </EquationSource> </InlineEquation> is a linear random field. Sharp rates of convergence of histogram estimates...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992899