Showing 1 - 10 of 11
We study the nonparametric calibration of exponential, self-decomposable Lévy models whose jump density can be characterized by the k-function, which is typically nonsmooth at zero. On the one hand the estimation of the drift, the activity measure a := k(0+) + k(0-) and analog parameters for...
Persistent link: https://www.econbiz.de/10009379550
We estimate linear functionals in the classical deconvolution problem by kernel estimators. We obtain a uniform central limit theorem with square root n rate on the assumption that the smoothness of the functionals is larger than the ill-posedness of the problem, which is given by the polynomial...
Persistent link: https://www.econbiz.de/10009573316
Observing prices of European put and call options, we calibrate exponential Lévy models nonparametrically. We discuss the implementation of the spectral estimation procedures for Lévy models of finite jump activity as well as for self-decomposable Lévy models and improve these methods....
Persistent link: https://www.econbiz.de/10009502936
Observing prices of European put and call options, we calibrate exponential Lévy models nonparametrically. We discuss the implementation of the spectral estimation procedures for Lévy models of finite jump activity as well as for self-decomposable Lévy models and improve these methods....
Persistent link: https://www.econbiz.de/10010281479
We study the nonparametric calibration of exponential, self-decomposable Lévy models whose jump density can be characterized by the k-function, which is typically nonsmooth at zero. On the one hand the estimation of the drift, the activity measure a := k(0+) + k(0-) and analog parameters for...
Persistent link: https://www.econbiz.de/10010281533
We estimate linear functionals in the classical deconvolution problem by kernel estimators. We obtain a uniform central limit theorem with square root n rate on the assumption that the smoothness of the functionals is larger than the ill-posedness of the problem, which is given by the polynomial...
Persistent link: https://www.econbiz.de/10010318746
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10005207929
A popular view of limited liability in financial contracting is that it is the result of societal preferences against excessive penalties. The view of most financial economists is instead that limited liability emerged as an optimal institution when, in the absence of a clear limit on economic...
Persistent link: https://www.econbiz.de/10005784849
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10005677958
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10008568137