Showing 1 - 10 of 14
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010343850
Persistent link: https://www.econbiz.de/10012297524
The present paper provides a review of the results concerning distributional properties of means of random probability measures. Our interest in this topic has originated from inferential problems in Bayesian Nonparametrics. Nonetheless, it is worth noting that these random quantities play an...
Persistent link: https://www.econbiz.de/10008495358
Recently, James [15, 16] has derived important results for various models in Bayesian nonparametric inference. In particular, he dened a spatial version of neutral to the right processes and derived their posterior distribution. Moreover, he obtained the posterior distribution for an intensity...
Persistent link: https://www.econbiz.de/10004980481
One of the main research areas in Bayesian Nonparametrics is the proposal and study of priors which generalize the Dirichlet process. Here we exploit theoretical properties of Poisson random measures in order to provide a comprehensive Bayesian analysis of random probabilities which are obtained...
Persistent link: https://www.econbiz.de/10005125173
Persistent link: https://www.econbiz.de/10012514037
Persistent link: https://www.econbiz.de/10013329446
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010335257
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10009651024
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–Yor process priors, select...
Persistent link: https://www.econbiz.de/10010842840