Showing 1 - 10 of 1,791
Commonly used priors for Vector Autoregressions (VARs) induce shrinkage on the autoregressive coefficients. Introducing shrinkage on the error covariance matrix is sometimes done but, in the vast majority of cases, without considering the network structure of the shocks and by placing the prior...
Persistent link: https://www.econbiz.de/10015395756
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10011442889
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011442891
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011442895
The performance of Monte Carlo integration methods like importance-sampling or Markov-Chain Monte-Carlo procedures depends greatly on the choice of the importance- or candidate-density. Such a density must typically be "close" to the target density to yield numerically accurate results with...
Persistent link: https://www.econbiz.de/10005345300
This paper analyzes the time-varying parameter vector autoregressive (TVP-VAR) model for the Japanese economy and monetary policy. The time-varying parameters are estimated via the Markov chain Monte Carlo method and the posterior estimates of parameters reveal the time-varying structure of the...
Persistent link: https://www.econbiz.de/10004972461
This paper aims to provide a comprehensive overview of the estimation methodology for the time-varying parameter structural vector autoregression (TVP-VAR) with stochastic volatility, in both methodology and empirical applications. The TVP-VAR model, combined with stochastic volatility, enables...
Persistent link: https://www.econbiz.de/10008863933
Likelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using...
Persistent link: https://www.econbiz.de/10005043139
This paper aims to provide a comprehensive overview of the estimation methodology for the time-varying parameter structural vector autoregression (TVP-VAR) with stochastic volatility, in both methodology and empirical applications. The TVP-VAR model, combined with stochastic volatility, enables...
Persistent link: https://www.econbiz.de/10009364154
Bayesian forecasting is a natural product of a Bayesian approach to inference. The Bayesian approach in general requires explicit formulation of a model, and conditioning on known quantities, in order to draw inferences about unknown ones. In Bayesian forecasting, one simply takes a subset of...
Persistent link: https://www.econbiz.de/10014023705