Showing 1 - 10 of 41
Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance...
Persistent link: https://www.econbiz.de/10010708157
Persistent link: https://www.econbiz.de/10009406553
While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential...
Persistent link: https://www.econbiz.de/10010708771
For numerous models, it is impossible to conduct an exact Bayesian inference. There are many cases where the derivation of the posterior distribution leads to intractable calculations (due to the fact that this generally involves intractable integrations). The Bayesian computational literature...
Persistent link: https://www.econbiz.de/10011073850
Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance...
Persistent link: https://www.econbiz.de/10009019018
Persistent link: https://www.econbiz.de/10009405975
En estimation bayésienne, lorsque le calcul explicite de la loi a posteriori du vecteur des paramètres à estimer est impossible, les méthodes de Monte-Carlo par chaînes de Markov (MCMC) [Robert and Casella, 1999] permettent théoriquement de fournir un échantillon approximativement...
Persistent link: https://www.econbiz.de/10009002735
This introduction to Bayesian statistics presents the main concepts as well as the principal reasons advocated in favour of a Bayesian modelling. We cover the various approaches to prior determination as well as the basis asymptotic arguments in favour of using Bayes estimators. The testing...
Persistent link: https://www.econbiz.de/10010708281
This paper deals with some computational aspects in the Bayesian analysis of statistical models with intractable normalizing constants. In the presence of intractable normalizing constants in the likelihood function, traditional MCMC methods cannot be applied. We propose an approach to sample...
Persistent link: https://www.econbiz.de/10010708703
Persistent link: https://www.econbiz.de/10000414017