Showing 1 - 10 of 1,107
In this article we introduce a new framework for counterparty risk model backtesting based on Bayesian methods. This provides a conceptually sound approach for analyzing model performance which is also straightforward to implement. We show that our methodology provides important advantages over...
Persistent link: https://www.econbiz.de/10013305804
Following Lancaster (2002), we propose a strategy to solve the incidental parameter problem. The method is demonstrated under a simple panel Poisson count model. We also extend the strategy to accomodate cases when information orthogonality is unavailable, such as the linear AR(p) panel model....
Persistent link: https://www.econbiz.de/10003817215
This paper deals with instability in regression coefficients. We propose a Bayesian regression model with time-varying coefficients (TVC) that allows to jointly estimate the degree of instability and the time-path of the coefficients. Thanks to the computational tractability of the model and to...
Persistent link: https://www.econbiz.de/10012161539
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10003770817
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10011380176
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only SMC...
Persistent link: https://www.econbiz.de/10012936969
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain...
Persistent link: https://www.econbiz.de/10013047483