Showing 1 - 10 of 31
We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint...
Persistent link: https://www.econbiz.de/10010326393
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10013019586
We present an accurate and efficient method for Bayesian forecasting of two financial risk measures, Value-at-Risk and Expected Shortfall, for a given volatility model. We obtain precise forecasts of the tail of the distribution of returns not only for the 10-days-ahead horizon required by the...
Persistent link: https://www.econbiz.de/10012114771
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012114810
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012661544
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010491347
We investigate high-frequency volatility models for analyzing intra-day tick by tick stock price changes using Bayesian estimation procedures. Our key interest is the extraction of intra-day volatility patterns from high-frequency integer price changes. We account for the discrete nature of the...
Persistent link: https://www.econbiz.de/10011526105
We consider the dynamic factor model where the loading matrix, the dynamic factors and the disturbances are treated as latent stochastic processes. We present empirical Bayes methods that enable the efficient shrinkage-based estimation of the loadings and the factors. We show that our estimates...
Persistent link: https://www.econbiz.de/10010357912
We investigate high-frequency volatility models for analyzing intra-day tick by tick stock price changes using Bayesian estimation procedures. Our key interest is the extraction of intra-day volatility patterns from high-frequency integer price changes. We account for the discrete nature of the...
Persistent link: https://www.econbiz.de/10011456723