Showing 1 - 10 of 64
Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster...
Persistent link: https://www.econbiz.de/10010385823
Persistent link: https://www.econbiz.de/10003363338
Persistent link: https://www.econbiz.de/10001726210
Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For OLS regression, a new algorithm is provided for the pairs cluster bootstrap, and two algorithms for the wild cluster bootstrap are compared. One of these is a new way to express...
Persistent link: https://www.econbiz.de/10012662210
As I document using evidence from a journal data repository that I manage, the datasets used in empirical work are getting larger. When we use very large datasets, it can be dangerous to rely on standard methods for statistical inference. In addition, we need to worry about computational issues....
Persistent link: https://www.econbiz.de/10012815681
White (1980) marked the beginning of a new era for inference in econometrics. It introduced the revolutionary idea of inference that is robust to heteroskedasticity of unknown form, an idea that was very soon extended to other forms of robust inference and also led to many new estimation...
Persistent link: https://www.econbiz.de/10009127144
In many fields of economics, and also in other disciplines, it is hard to justify the assumption that the random error terms in regression models are uncorrelated. It seems more plausible to assume that they are correlated within clusters, such as geographical areas or time periods, but...
Persistent link: https://www.econbiz.de/10012183351
Persistent link: https://www.econbiz.de/10011775761
Persistent link: https://www.econbiz.de/10011801754
Persistent link: https://www.econbiz.de/10013329371