Showing 1 - 10 of 78
Persistent link: https://www.econbiz.de/10000412287
Persistent link: https://www.econbiz.de/10003294032
Persistent link: https://www.econbiz.de/10001441585
Persistent link: https://www.econbiz.de/10001374434
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of conditional heteroskedasticity in large universes. Conversely,...
Persistent link: https://www.econbiz.de/10011969201
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012026512
Conditional heteroskedasticity of the error terms is a common occurrence in financial factor models, such as the CAPM and Fama-French factor models. This feature necessitates the use of heteroskedasticity consistent (HC) standard errors to make valid inference for regression coefficients. In...
Persistent link: https://www.econbiz.de/10014278560
Many statistical applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the...
Persistent link: https://www.econbiz.de/10010316854
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10010316930
This paper revisits the methodology of Stein (1975, 1986) for estimating a covariance matrix in the setting where the number of variables can be of the same magnitude as the sample size. Stein proposed to keep the eigenvectors of the sample covariance matrix but to shrink the eigenvalues. By...
Persistent link: https://www.econbiz.de/10010316932