Showing 1 - 10 of 8,802
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the...
Persistent link: https://www.econbiz.de/10014514075
This paper proposes a novel algorithm called Persistent Homology for Realized Volatility (PH-RV), which aims to effectively incorporate persistent homology (PH) into neural network models to increase their forecast accuracy in predicting realized volatility (RV). This paper also proposes a novel...
Persistent link: https://www.econbiz.de/10014354048
Predicting stock returns has been a never ending endeavour of both, practitioners and academics. Accurate forecasts are crucial for investment decisions and performances as well as for analysing market microstructures. This paper offers an innovative approach towards forecasting based on Neural...
Persistent link: https://www.econbiz.de/10014236213
Textual analysis of news articles is increasingly important in predicting stock prices. Previous research has intensively utilized the textual analysis of news and other firm-related documents in volatility prediction models. It has been demonstrated that the news may be related to abnormal...
Persistent link: https://www.econbiz.de/10011881761
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
This paper investigates the application of neural basis expansion analysis with exogenous variables (NBEATSx) in the prediction of daily stock realized volatility for various time steps. It compares NBEATSx’s forecasting accuracy and robustness with several commonly used models, namely...
Persistent link: https://www.econbiz.de/10014350170
This paper reviews research that uses big data and/or machine learning methods to provide insight relevant for equity valuation. Given the huge volume of research in this area, the review focuses on studies that either use or inform on accounting variables. The article concludes by providing...
Persistent link: https://www.econbiz.de/10014433769
We propose a new approach to model high and low frequency components of equity correlations. Our framework combines a factor asset pricing structure with other specifications capturing dynamic properties of volatilities and covariances between a single common factor and idiosyncratic returns....
Persistent link: https://www.econbiz.de/10003821063
This article studies the risk forecasting properties of three realized volatility models for three Chinese individual stocks, and reveals the important role that jumps can play in risk prediction. I firstly investigate dynamic pattern of jumps in three Chinese stocks, and find that relative to...
Persistent link: https://www.econbiz.de/10013131542
This paper examines the effectiveness of using futures contracts as hedging instruments of: (1) alternative models of volatility for estimating conditional variances and covariances; (2) alternative currencies; and (3) alternative maturities of futures contracts. For this purpose, daily data of...
Persistent link: https://www.econbiz.de/10013113663