Showing 1 - 10 of 39
Persistent link: https://www.econbiz.de/10001672851
We revisit the classic semiparametric problem of inference on a low di-mensional parameter Ø0 in the presence of high-dimensional nuisance parameters Û0. We depart from the classical setting by allowing for Û0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10011941471
We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic...
Persistent link: https://www.econbiz.de/10008695561
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
This paper examines a general class of inferential problems in semiparametric and nonparametric models defined by conditional moment restrictions. We construct tests for the hypothesis that at least one element of the identified set satisfies a conjectured (Banach space) "equality" and/or (a...
Persistent link: https://www.econbiz.de/10011337665
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
Persistent link: https://www.econbiz.de/10009689519
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10009419335
We propose methods for inference on the average effect of a treatment on a scalar outcome in the presence of very many controls. Our setting is a partially linear regression model containing the treatment/policy variable and a large number p of controls or series terms, with p that is possibly...
Persistent link: https://www.econbiz.de/10009419338
Persistent link: https://www.econbiz.de/10010247741