Showing 1 - 10 of 61
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717
We consider estimation of policy relevant treatment effects in a data-rich environ ment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endogenous...
Persistent link: https://www.econbiz.de/10010200037
Persistent link: https://www.econbiz.de/10010256214
Persistent link: https://www.econbiz.de/10011549910
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011486511
Persistent link: https://www.econbiz.de/10011561865
Estimators of average treatment effects under unconfounded treatment assignment are known to become rather imprecise if there is limited overlap in the covariate distributions between the treatment groups. But such limited overlap can also have a detrimental effect on inference, and lead for...
Persistent link: https://www.econbiz.de/10010467806
A simple shrinkage method is proposed to improve the performance of weighting estimators of the average treatment effect. As the weights in these estimators can become arbitrarily large for the propensity scores close to the boundaries, three different variants of a shrinkage method for the...
Persistent link: https://www.econbiz.de/10010412049
Persistent link: https://www.econbiz.de/10009682440
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous. I show...
Persistent link: https://www.econbiz.de/10011387124