Showing 1 - 4 of 4
We develop a duality theory for weakly minimal points of multiple objective linear programs which has several advantages in contrast to other theories. For instance, the dual variables are vectors rather than matrices and the dual feasible set is a polyhedron. We use a set-valued dual objective...
Persistent link: https://www.econbiz.de/10010999730
We develop a duality theory for weakly minimal points of multiple objective linear programs which has several advantages in contrast to other theories. For instance, the dual variables are vectors rather than matrices and the dual feasible set is a polyhedron. We use a set-valued dual objective...
Persistent link: https://www.econbiz.de/10010759327
New versions and extensions of Benson’s outer approximation algorithm for solving linear vector optimization problems are presented. Primal and dual variants are provided in which only one scalar linear program has to be solved in each iteration rather than two or three as in previous...
Persistent link: https://www.econbiz.de/10010994156
Two approximation algorithms for solving convex vector optimization problems (CVOPs) are provided. Both algorithms solve the CVOP and its geometric dual problem simultaneously. The first algorithm is an extension of Benson’s outer approximation algorithm, and the second one is a dual variant...
Persistent link: https://www.econbiz.de/10011151248