Showing 1 - 10 of 28
Persistent link: https://www.econbiz.de/10001754536
Persistent link: https://www.econbiz.de/10012619418
Persistent link: https://www.econbiz.de/10012302521
The measurement of treatment (intervention) effects on a single (or just a few) treated unit(s) based on counterfactuals constructed from artificial controls has become a popular practice in applied statistics and economics since the proposal of the synthetic control method. In high-dimensional...
Persistent link: https://www.econbiz.de/10012308185
Persistent link: https://www.econbiz.de/10011692397
Persistent link: https://www.econbiz.de/10012145042
High-dimensional covariates often admit linear factor structure. To effectively screen correlated covariates in high-dimension, we propose a conditional variable screening test based on non-parametric regression using neural networks due to their representation power. We ask the question whether...
Persistent link: https://www.econbiz.de/10015053806
Persistent link: https://www.econbiz.de/10001790237
Various parametric models have been developed to predict large volatility matrices, based on the approximate factor model structure. They mainly focus on the dynamics of the factor volatility with some finite high-order moment assumptions. However, the empirical studies have shown that the...
Persistent link: https://www.econbiz.de/10013211439
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking...
Persistent link: https://www.econbiz.de/10013091885