Showing 1 - 10 of 6,570
Covariance matrix forecasts for portfolio optimization have to balance sensitivity to new data points with stability in order to avoid excessive rebalancing. To achieve this, a new robust orthogonal GARCH model for a multivariate set of non-Gaussian asset returns is proposed. The conditional...
Persistent link: https://www.econbiz.de/10012134234
Is univariate or multivariate modelling more effective when forecasting the market risk of stock portfolios? We examine this question in the context of forecasting the one-week-ahead Expected Shortfall of a portfolio invested in the Fama-French and momentum factors. Apply ingextensive tests and...
Persistent link: https://www.econbiz.de/10012898954
This study predicts stock market volatility and applies them to the standard problem in finance, namely, asset allocation. Based on machine learning and model averaging approaches, we integrate the drivers’ predictive information to forecast market volatilities. Using various evaluation...
Persistent link: https://www.econbiz.de/10013404229
We develop a new variational Bayes estimation method for large-dimensional sparse vector autoregressive models with exogenous predictors. Unlike existing Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms, our approach is not based on a structural form representation of the...
Persistent link: https://www.econbiz.de/10013239660
In this paper, we ask whether it is possible to forecast gross value-added (GVA) and its sectoral subcomponents at the regional level. With an autoregressive distributed lag model we forecast total and sectoral GVA for one German state (Saxony) with more than 300 indicators from different...
Persistent link: https://www.econbiz.de/10010213032
Beyond their importance from the regulatory policy point of view, Value-at-Risk (VaR) and Expected Shortfall (ES) play an important role in risk management, portfolio allocation, capital level requirements, trading systems, and hedging strategies. Unfortunately, due to the curse of...
Persistent link: https://www.econbiz.de/10013242339
We study dynamic portfolio choice of a long-horizon investor who uses deep learning methods to predict equity returns when forming optimal portfolios. Our results show statistically and economically significant benefits from using deep learning to form optimal portfolios through certainty...
Persistent link: https://www.econbiz.de/10013225327
We postulate that utilizing return prediction models with fundamental, macroeconomic, and technical indicators instead of using historical averages should result in superior asset allocation decisions. We investigate the predictive power of individual variables for forecasting industry returns...
Persistent link: https://www.econbiz.de/10012937630
We propose direct multiple time series models for predicting high dimensional vectors of observable realized global minimum variance portfolio (GMVP) weights computed based on high-frequency intraday returns. We apply Lasso regression techniques, develop a class of multiple AR(FI)MA models for...
Persistent link: https://www.econbiz.de/10014352129
We explore the performance of mixed-frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed-frequency models...
Persistent link: https://www.econbiz.de/10014348997