Showing 1 - 10 of 34,854
This paper analyzes estimators based on the instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2004, 2005, 2006) under the local quantile treatment effects (LQTE) framework (Abadie et al., 2002). I show that the quantile treatment effect (QTE) estimators in the IVQR...
Persistent link: https://www.econbiz.de/10010437770
This paper studies estimation of conditional and unconditional quantile treatment effects based on the instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2004, 2005, 2006). I introduce a class of semiparametric plug-in estimators based on closed form solutions...
Persistent link: https://www.econbiz.de/10011297659
In nonparametric instrumental variables estimation, the mapping that identifies the function of interest, g say, is discontinuous and must be regularised (that is, modified) to make consistent estimation possible. The amount of modification is contolled by a regularisation parameter. The optimal...
Persistent link: https://www.econbiz.de/10009760143
We develop a nonparametric instrumental variable approach for the estimation of average treatment effects on hazard rates and conditional survival probabilities, without model structure. We derive constructive identification proofs for average treatment effects under noncompliance and dynamic...
Persistent link: https://www.econbiz.de/10011453442
We develop a nonparametric instrumental variable approach for the estimation of average treatment effects on hazard rates and conditional survival probabilities, without model structure.We derive constructive identification proofs for average treatment effects under noncompliance and dynamic...
Persistent link: https://www.econbiz.de/10011492188
A key assumption in regression discontinuity analysis is that units cannot manipulate the value of their running variable in a way that guarantees or avoids assignment to the treatment. Standard identification arguments break down if this condition is violated. This paper shows that treatment...
Persistent link: https://www.econbiz.de/10011428251
Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage point outliers...
Persistent link: https://www.econbiz.de/10012547410
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that...
Persistent link: https://www.econbiz.de/10011778870
The key assumption in regression discontinuity analysis is that the distribution of potential outcomes varies smoothly with the running variable around the cutoff. In many empirical contexts, however, this assumption is not credible; and the running variable is said to be manipulated in this...
Persistent link: https://www.econbiz.de/10012315672
We study identification and estimation of the average treatment effect in a correlated random coefficients model that allows for first stage heterogeneity and binary instruments. The model also allows for multiple endogenous variables and interactions between endogenous variables and covariates....
Persistent link: https://www.econbiz.de/10010227690