Showing 1 - 10 of 60
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10003636113
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10003973650
This paper investigates the main individual driving forces of Hungarian household credit risk and measures the shockabsorbing capacity of the banking system in relation to adverse macroeconomic events. The analysis relies on survey evidence gathered by the Magyar Nemzeti Bank (MNB) in January...
Persistent link: https://www.econbiz.de/10003604928
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10011378719
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10009696691
In this paper we apply cointegration and Granger-causality analyses to construct linear and neural network error-correction models for an Austrian Initial Public Offerings IndeX (IPOXATX). We use the significant relationship between the IPOXATX and the Austrian Stock Market Index ATX to forecast...
Persistent link: https://www.econbiz.de/10009696693
This paper examines the evidence regarding predictability in the market risk premium using artificial neural networks (ANNs), namely the Elman Network (EN) and the Higher Order Neural network (HONN), univariate ARMA and exponential smoothing techniques, such as Single Exponential Smoothing (SES)...
Persistent link: https://www.econbiz.de/10011454082
This article questions the slope homogeneity in a gravity equation and proposes a partially heterogeneous framework for its estimation using panel data. We suggest to employ K-mean clustering to group countries according to the gravity equation variables. Further, the gravity model is estimated...
Persistent link: https://www.econbiz.de/10010461219
In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine the Generalized Autoregressive Heteroskedasticity (GARCH) process and an Adaptive Neuro-Fuzzy Inference System (ANFIS). The conclusions of our findings are that the...
Persistent link: https://www.econbiz.de/10013129200
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002...
Persistent link: https://www.econbiz.de/10013137778