Showing 1 - 10 of 16
When a continuous-time diffusion is observed only at discrete dates, not necessarily close together, the likelihood function of the observations is in most cases not explicitly computable. Researchers have relied on simulations of sample paths in between the observations points, or numerical...
Persistent link: https://www.econbiz.de/10012472425
Classical statistics suggest that for inference purposes one should always use as much data as is available. We study how the presence of market microstructure noise in high-frequency financial data can change that result. We show that the optimal sampling frequency at which to estimate the...
Persistent link: https://www.econbiz.de/10012785227
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411
Implicit in the prices of traded financial assets are Arrow- Debreu state prices or, in the continuous-state case, the state-price density (SPD). We construct an estimator for the SPD implicit in option prices and derive an asymptotic sampling theory for this estimator to gauge its accuracy. The...
Persistent link: https://www.econbiz.de/10012763707
We develop and implement a new method for maximum likelihood estimation in closed-form of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood...
Persistent link: https://www.econbiz.de/10012767654
We develop tests that help assess whether a high frequency data sample can be treated as reasonably free of market microstructure noise at a given sampling frequency for the purpose of implementing high frequency volatility and other estimators. The tests are based on the Hausman principle of...
Persistent link: https://www.econbiz.de/10012969870
When a continuous-time diffusion is observed only at discrete dates, not necessarily close together, the likelihood function of the observations is in most cases not explicitly computable. Researchers have relied on simulations of sample paths in between the observations points, or numerical...
Persistent link: https://www.econbiz.de/10013216521
High-frequency financial data are not only discretely sampled in time but the time separating successive observations is often random. We analyze the consequences of this dual feature of the data when estimating a continuous-time model. In particular, we measure the additional effects of the...
Persistent link: https://www.econbiz.de/10013210694
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we compute Edgeworth expansions for such estimators. Unlike the usual expansions, we have found that in order to obtain meaningful...
Persistent link: https://www.econbiz.de/10012466953
We develop and implement a new method for maximum likelihood estimation in closed-form of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood...
Persistent link: https://www.econbiz.de/10012468114