Showing 1 - 10 of 1,984
In this paper we study the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce...
Persistent link: https://www.econbiz.de/10003958725
We propose a set of algorithms for testing the ergodicity of empirical time series, without reliance on a specific parametric framework. It is shown that the resulting test asymptotically obtains the correct size for stationary and nonstationary processes, and maximal power against non-ergodic...
Persistent link: https://www.econbiz.de/10014184182
This paper develops a wavelet (spectral) approach to estimate the parameters of a linear regression model where the regressand and the regressors are persistent processes and contain a measurement error. We propose a wavelet filtering approach which does not require instruments and yields...
Persistent link: https://www.econbiz.de/10013158834
We extend the maximum likelihood estimation method of Ait-Sahalia (2002) for time-homogeneous diffusions to time-inhomogeneous ones. We derive a closed-form approximation of the likelihood function for discretely sampled time-inhomogeneous diffusions, and prove that this approximation converges...
Persistent link: https://www.econbiz.de/10014108956
We extend the maximum likelihood estimation method of Ait-Sahalia (2002) for time-homogeneous diffusions to time-inhomogeneous ones. We derive a closed-form approximation of the likelihood function for discretely sampled time-inhomogeneous diffusions, and prove that this approximation converges...
Persistent link: https://www.econbiz.de/10014033403
Persistent link: https://www.econbiz.de/10010473427
Persistent link: https://www.econbiz.de/10010473444
This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. The framework covers cases where the underlying likelihood or extremum criterion function is possibly non-concave, discontinuous, and of...
Persistent link: https://www.econbiz.de/10014052489
Quantile and least-absolute deviations (LAD) methods are popular robust statistical methods but have not generally been applied to state filtering and sequential parameter learning. This paper introduces robust state space models whose error structure coincides with quantile estimation...
Persistent link: https://www.econbiz.de/10014200732
This paper develops particle-based methods for sequential inference in nonlinear models. Sequential inference is notoriously difficult in nonlinear state space models. To overcome this, we use auxiliary state variables to slice out nonlinearities where appropriate. This induces a Fixed-dimension...
Persistent link: https://www.econbiz.de/10013134153